
The mixed form of the diffusion problem 
is
       F = - K grad  p,    div F = b
where the first equation is the constitu-
tive equation relating the scalar function 
p (pressure in flow simulations) to the 
velocity field F and the second one is 
the mass conservation law. The material 
properties are described by the full sym-
metric tensor K, and b is the source func-
tion. For this problem, the MFD method 
mimics the Gauss divergence theorem, 
the symmetry between the continu-
ous gradient and divergence operators, 
and the null spaces of these operators. 
Therefore, it produces the discretization 
scheme which is symmetric and locally 
conservative.

Note that the finite volume discretization 
methodology results in nonsymmetric 
schemes. The old MFD method [3] 
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Tetrahedral and structured 
hexahedral meshes have been 
used for decades in a majority 
of engineering simulations; 

they are relatively easy to generate and 
there exists an enormous repository 
of numerical methods designed for 
these meshes. Nowadays, a growing 
number of complex simulations show 
advantage of using polyhedral meshes. 
For example, in the simulation of flow 
through a water jacket of an engine [1], 
the results obtained on a polyhedral 
mesh are more accurate than the results 
obtained on a tetrahedral mesh with 
a comparable number of cells. In oil 
reservoir simulations, the polyhedral 
mesh topology offers unlimited 
possibilities: cells can be automatically 
joined, split, or modified by introducing 
additional points, edges, and faces to 
model complex geological features. 
Unfortunately, most of the existing 
numerical methods cannot be extended 
to polyhedral meshes, especially to 
meshes with cells having strongly curved 
(nonplanar) faces.

In [2], we considered a diffusion prob-
lem, which appears in computational 
fluid dynamics, heat conduction, radia-
tion transport, etc., and developed a new 
discretization methodology that has no 
analogs in literature. The methodology 
follows the general principle of the mi-
metic finite difference (MFD) method 
— to mimic the essential underlying 
properties of the original continuum dif-
ferential operators such as the conserva-
tion laws, solution symmetries, and the 
fundamental identities and theorems of 
vector and tensor calculus.

Fig.	1.	
The	top	pic-
ture	shows	the	
interior	of	a	logi-
cally	cubic	mesh	
with	randomly	
perturbed	points.	
The	bottom	
picture	shows	the	
optimal	conver-
gence	rates	for	
the	new	MFD	
method	(blue),	
and	the	lack	of	
convergence	for	
the mixed finite 
element	(black)	
and	the	old	MFD	
(red)	methods.
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used one degree of freedom per cell to 
approximate the pressure and one degree 
of freedom per mesh face to approximate 
the average normal component of the 
velocity. The same degrees of freedom 
are used in the mixed finite element 
method on tetrahedral and hexahedral 
meshes.

The new discretization methodology 
[2] uses three degrees of freedom, 
three average velocity components, 
to approximate velocity on strongly 
curved faces. It results in the new MFD 
method that improves drastically the 
capabilities of the existing methods (see 
figures). When faces of mesh cells are 
plane segments, or slightly perturbed 
plane segments, the new MFD method 
is reduced to the old one from [3]. 
When the faces are strongly curved, the 
extra degrees of freedom allow the new 
method to succeed and perform much 
better than other methods. Necessity 
to use three velocity components on 
strongly curved faces is possibly the 
intrinsic difficulty and the reason why 
nobody succeeded in doing a reasonable 
job on meshes with such cells. The 
theoretical analysis of the new method is 
done in [2].

Another advantage of the developed 
methodology is that its practical 
implementation is simple and follows 
roughly the path described in [4]. 
In particular, we get a family 
of discretization schemes with 
similar properties. This family of 
schemes may be used to tackle other 
computational problems.

Fig.	2.	
The	top	picture	
shows	a	general-
ized	polyhedral	
mesh	where	the	
mixed finite 
element	method	
cannot	be	used.	
Note	that	68%	
of	interior	mesh	
faces	are	nonpla-
nar.	The	bottom	
picture	shows	
optimal	conver-
gence	rates	for	the	
new	MFD	method	
(blue)	and	the	
lack	of	conver-
gence	for	the	old	
MFD	method	
(red).

For more information contact Mikhail 
Shashkov at shashkov@lanl.gov.
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